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Kinetic properties of multiquanta Davydov-like solitons in molecular chains
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The Fokker-Planck equation for multivibron solitons interacting with lattice vibrations in a molecular chain
has been derived by means of the nonequilibrium statistical operator method. It was shown that a soliton
undergoes diffusive motion characterized by two substantially different diffusion coefficients. The first one
corresponds to the ordinafiinsteinian or dissipatiyediffusion and characterizes the soliton Brownian mo-
tion, while the second one corresponds to the anomalous diffusion connected with frictionless displacement of
the soliton center of mass coordinate due to the interaction with phonons. Both processes are the consequence
of the Cherenkov-like radiation of phonon quanta arising when soliton velocity approaches the phase speed of
sound.[S1063-651X99)01707-9

PACS numbgs): 87.15~v, 05.20.Dd, 71.35:y, 71.38+i

Examination of the possible role of the solitonic mecha-Under these circumstances soliton dynamics can be de-
nism in charge and energy transfer over large distances iscribed by the Fokker-Planck equati@PB for the soliton
one-dimensional excitokelectron-phonon systems has re- distribution function which will be derived below. For that
ceived considerable interest in the last twenty-five yearpurpose we shall use the method introduced in Ref] for
[1-9]. A majority of these studies deal with the so-called the examination of the related problem: kink dynamics under
Davydov model, which assumes soliton formation on acihe influence of lattice vibrations. It is based upon the
count of single “exciton” (vibron, electron, Frenkel exciton, Method of a nonequilibrium statistical operator as developed
...) trapping by the induced local distortion of the host lat- by Zubarev[13].
tice [self-trapping(ST) mechanismh In order to avoid any The starting point of our analysis is the well-known
confusion we note that in the present context, we use th&rohlich-like Hamiltonian of the molecular chain specified as
term exciton to denote the quantum of the intramolecular
vibrational excitation of the molecular chain or vibron. In- _ + +
vestigations carried out within the general theory of the ST H _A; AnAn J; An (AnsatAn-)
phenomend5-7] indicate that the original Davydov pro-
posal, i.e., soliton formation on account of the single exciton
ST, cannot explain intramolecular ener@@midet quanta
transfer in biopolymers such as thehelix and acetanilide
(ACN). Namely, according to the available d4@-9], the (1)
width of the exciton band of these substances is too small N ) ]
compared to the maximal phonon frequency-nonadibati®vhereA, (An) describes the presencabsencgof the exci-
limit, so that one should expect the formation of the small-tation with the energyA on thenth molecular groupb (bg)
polaron band stat§&—10] rather than a soliton. creates (annihilate$ phonon quanta with frequencyy,

Nevertheless, recent analy§isl] points to the possibility ~While F, denotes the exciton-phonon coupling parameter. It
of soliton formation in such systems but only for higher ex-is given byF = 2i x(7/2M wq)*?singR, in the case of cou-
citation concentrations, where, the so-called “dressing” ef-pling with acoustic phonons with frequencyw,
fect which results in an additionalphonon mediated = wgSiNgRy/2|, wg=2(x/M)*? denotes the maximal pho-
exciton-exciton interaction, plays the dominant role in soli-non frequency is the spring constanM denotes the mass
ton formation, which now represents the bound state of sevef the molecular groupR, denotes the lattice constant, and
eral excitations. However, the results of that analysis, obfinally J and y represent intersite dipole-dipole transfer inte-
tained within the framework of the mean-field method, are ofgral and coupling strength, respectively. In the case of cou-
limited validity. In particular, the starting point of these ex- pling with dispersionless optical modes we hawg= w,
aminations was an effective, mean-field Hamiltonian de-=const andF = x(%/2M w,)*?, the meaning of symbols is as
scribing the system of interacting “dressed” quasiparticlesbefore. Obviously this corresponds to the known Holstein’s
(polarons completely disregarding the coupling of such ex- molecular crystal modgMCM) [10]. Here we are primarily
citations with the remaining phonons. As a result of such dnterested in the examination of the soliton dynamics in the
coupling, energy exchange between the constituent sulsontext of their possible relevance for the intramolecular vi-
systems takes place, which, in turn, may have a certain imbrational energy transfer in the systems such asattnelix
pact on soliton dynamics and stability and, in the final in-and ACN, where the width of the exciton band is small com-
stance, would induce its decay. pared to the width of the phonon band. Under these condi-

The subject of the present paper is the examination of théons the properties of the exciton-phonon system are domi-
kinetic properties of such solitons arising as a consequenagated by the so-called “dressing” effect, and soliton
of their coupling to the phonons which act as a thermal bathformation arises on account of the effective exciton-exciton

1 .
t qEn qu'q”ROA:An(bq-l—bfq)-i—% fiwgby by,
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interaction[11]. As shown in Ref[11], exciton dressing can It was found that the whole parameter space of the system
be explicitly accounted for, with the help of the Lang-Firsov (S-B plang is divided into two regions in which two differ-
unitary transformatio14], by rewriting the Hamiltoniari1) ent types of nonlinear excitations, soliton and so-called in-
in terms of the dressed exciton and new phonon operators. Ininsic self-localized mode, exist. These regions are separated
such a way the model Hamiltonian of the system can béyy the continuum boundar$(T)=B(T)/N, where N/ de-
represented as a sum of two terris= H 4+ H;: [11]. Here  notes the number of quanta engaged in the soliton creation.
Hi denotes the effective Hamiltonian of dressed excitationsSoliton solutions correspond to those points of the system
while the second term represents the interaction Hamiltoniaparameter space for which the condition for the applicability
with the remaining phonons. They are explicitly given as of the continuum approximation is satisfied and the soliton
sector lies below that lingl1]. In the systems we are prima-
A tp _ + rily interested in the adiabaticity parameter lies in honadia-
Her=[4 EB]; Bn Bn Jeﬁn,lztl Bn Bo- batic region B<1) so that the soliton sector corresponds to
the weak-coupling limit. Consequently, the exponential term
I +2R2 in H;,; containing the “small parameter” proportional to the
+% fiwq8q 8q EB[; Bn "Bi square root of the coupling constant, may be expanded in
power series where we may safely keep the first two terms
@) only. Under these conditions our interaction Hamiltonian be-

1
+§ 2 BrTBrT+IBn+IBn comes

nl=*x1

and 1 F _ _
Hin= g e 24 77,0 (1 €008 By 1(ag —ag)

VN

HimZJzn: {BaBni1[(070,,1)-0,0,,,]+H.c}. +H.c. @

® The next step is the derivation of an effective Lagrangian of
Here the soliton-phonon system in which the soliton subsystem is
described by the collective variables: its momentum and cen-
1 q _ . ter of mass.
®n=ex;{\/—ﬁ % h_wqe Fo(ag—aly) . In order to introduce a collective variable Hamiltonian
(Lagrangian let us recall that the equations of motion for the
In the above expressions we use the same notation as §¢liton amplitudegsoliton wave functiop follow from the

Ref.[11] so thatl.s=Je~ 3T denotes the effective transfer time-dependent variational principle—i.e., demanding the

integral with stationarity of the actionA=[ :idTﬁ[lﬁ*(T),l,D(T)] (6A
2 IFl2  _qRr, _ —0). Here £=(ih/2)[(¥|¥)—(V|¥)]—H(¥* ¥) de-
S(T)=NZ m q)zsin2 T(quJrl), notes the Lagrangian of the system with(V*,¥)

q wq

=(W|H|¥) and where|¥) denotes an appropriate trial
state. In the present context it is chosen as a product of the
Polaron operator coherent statd¥ (t))=|B(t)),|B(t))
=11,/ Bn(t)). Derivation of the collective variable Hamilt-
ionian assumes the following stef#) substututing the pro-

1 ||:q|2 posed form of the trial state into the explicit expression for
EB:N 2 - the Lagrangian(ii) going over to a continuum approxima-
d tion B,(t)— B(x,t), (iii) substitution of the explicit soliton
denotes the small-polaron binding energy. Finally, the operasolution in the forma(x,t) = B[x— &(t)] [£(t) denotes soli-
torsB, =U*A,U (B,) describe the presen¢absenceof a ton center of ma_ismto the so ob'talned Lagrangian, and
dressed excitation on theth site of the molecular chain, finally (iv) integration over the spatial coordinateThe first

while a§=U+b+U and aq=U+qu are the creation and two steps give us
annihilation operators of the “new” phonons in the chain it = d

(7q is the equilibrium phonon distributiondenoting the
temperature-dependent coupling constant introduced in Re
[5-7].

X . )
with the shifted equlibrium positions of the molecular L=~ R—(ﬁﬁ*—ﬁﬂ*)—Hs—Hint+ﬁph- )
groups.U is the Lang-Firsov unitary operatft2] 0
HereH, represents the Hamiltonian function of the solitonic
U=ex i D ie*iq“ROA+A (b_y—b?) subsystem which, in accordance with the above proposed
JN hg fiwg ntmEma Fa s procedure, may be approximated by the Hamiltonian of the

nonlinear Schrdinger model(NSM)

The last term in Eq(2) represents the effective exciton- . dx . dx
exciton interaction responsible for multiquanta soliton for- - 2 2 2
mation. Their properties have been exam?ned in detail in Ref. Hs= (A~ Eg=2Jen) j,x Ro B+ Jer Roﬁw Ro 1B
[11] where the criteria for their existence were formulated in
terms of temperature, coupling const@8{T) ], and the so- —2EBJOC d—x|ﬂ|4 6)
called adiabaticity paramet®&(T)=(8/37)(23/h wg)S(T). -= R ’



PRE 60

while

’ _ RoJet = dx Fq(1—e'Ro)
int \/N 3 e RO

X €% (ay —a_q)(B* By—c.c) (7)

fiwg
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1 (o OHing IHin(t)
_ = ot int int
Lll kTJ—oce dt< apsol 07Pso| >0, (12)
1 (o OHing IHine(t)
_ = ot int int
Ly ka_me dt< e >O, (13

where(- - - ) stands for the averaging over the thermal bath

denotes the soliton-phonon interaction Hamiltonian. As usualvhile H;,, denotes the soliton-phonon interaction Hamil-

dots and subscripts denote derivation with respetiatad x,
respectively. Finally,

if .
Lon= % (agag—H.c)—Hyp (8)

tonian expressed in terms of collective variablég,). Its
explicit form is given by the third term in the collective
variable Lagrangian in Eq9). Here, in the final calculations,

one must set—0. Explicit time dependence G, in the
above expressions appears only through the time dependence
of phonon operators and soliton momentum and center of

denotes the phonon subsystem Lagrangian. Following th&'2SS coordinate and, in the first approximation, will be

above proposed procedure we take the soliton amplitude

follows: B(x,t) = B[x— &(t),t]=B[x— £(t) ]ekx DI ot}

ecified by the solutions of their equations of motion with
respect to the unperturbed case. In particular, for the calcu-
lation of the above kinetic coefficients we shall adopt the

Here k= Py, /AN denotes the soliton quasimomentum
B[x—&(t)] is the soliton envelope given byB(x,t)
=Mul2)Y?sechuMRy)[x— &(t)], while » represents a

' following approximation_:aq(t)=aqe‘i‘“q‘, a;’(t)=aqei“’qt,
and ¢(t) =xqo+uvt (v-soliton velocity. Thus we get

soliton phase whose explicit form is irrelevant in the present 12n ) 1
context. After straightforward calculation we obtain the fol- L= TN ZO |Gql?| vt 5| 0wg—aqu), (14
lowing collective variable Lagrangian: a
1 2wPZ, 1
Pl P . Lop=1 > 9°|Gl?| vg+ 5| 8w qu).
L=EPgy— 5 — —= >, G4e'%(a; —a_g)+ Lon, (9) KT N >0 2
sol 2ms \/N 3 q q q ph (15)

where mg=N%2/2]4«R2 denotes the soliton effective mass It follows from the above derived FPE, that due to the inter-
[11]. In this expression we have neglected a constant terrction with phonons, the soliton undergoes diffusive motion
which does not contain soliton collective variables and@S result of two different mechanisms. The first one deter-
which consequently does not influence its dynamics. Théhines the Brownian motion of the soliton and corresponds to
soliton-phonon coupling parameter is given explicitly as  the ordinary(Einsteinian or dissipatiyediffusion character-
ized by the diffusion coefficienD =kT/L,,, whereL,, has

the meaning of the viscosity or friction coefficient. The sec-
ond mechanism, on the contrary, is not connected with dis-
sipation and arises as a result of the shift of the soliton center

of mass coordinate due to the interaction with phonons. The

The model s_pe.cified by the abpve Lagrangian despribes th&uantityD* =KTLy, plays the role of the coefficient of this
system consisting of the classical partisle(soliton) inter- it sjon. Both mechanisms are the consequence of the
?ctlng W'Fh ? qL;]antum-mfechanlcalhthermal bé_nhon_on$. It Cherenkov-like radiation of phonon quanta arising when the

as precisely the same form as the one_denveq In BQ_]' soliton velocity @) approaches the phase speed of sound
for the examination of the kinetic properties of kink solitons | /q. This is obvious from the presence ofsafunction in
interacting with a three-dimensional phonon field and wey,q oy hressions for the kinetic coefficients which are differ-
may safely follow the procedure proposed there. Thus th%nt from zero only when the argument of tefunction
next step is the derivation of the FPE for the soliton diStri'vanishes i.e., whem,=qu. The appearance of&function

1 . bRl q .

bution function[ f(Psq,£) ] which characterizes the macro- in the above expressions enables one to calculate explicitly
¥5th diffusion coefficients. Furthermore, adopting the long
wavelength limit Ry~0) we may approximate the soliton
form factor, the last factor in the expression for the soliton-
phonon coupling parametét0), by unity. This is justified
since it is highly peaked fogRy~0 and rapidly diminishes
asgR, increases. In such a way we obtain

_ 2iRgJegs Fo(1—€'9R0)
a4 hw

TRy 2uN
q sinh(rqRy/2uN)

(10

value of the soliton densityn(Psg,&) =2 6(Pso— Pi) 6(&
— &)1 f(Pso &) =(n(Pgy,€)), where(...) denotes the
averaging over the nonequlibrium statistical operfi@. In
such a way, strictly following Ref.12], we obtain the FPE

af+PSO| ot a ] kTaf
R T T

L ~12 B*RoweS ( (16)
~12————| vq + 5,
4 Psol of H kT\/l—U/CO do” 2
+ —=—|Lo| —f+kT , (11
IPgo Mg 9Pl 22R2
L ogg BV MBS /1_1( R
Herel;, andL,, are kinetic coefficients given as 2 kT Co a0 2
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in the case of the soliton coupling with acoustical phononsis connected to the soliton viscosity while the second, so to
HereB=(37/8)(2)/hwg) andS=(37/8)(Eg/hwg) repre- speak anomalous one, arises due to the phonon induced shift
sent the adiabaticity parameter and the coupling constanef the soliton position. This is the consequence of the fact

respectively, whileqo=(4.9R,)1—v/c, denotes a non- that the soliton-phonon interaction depends on soliton posi-
trivial solution of the equationn,—qu=0. It is necessary tion and momentum as well. A similar situation arises also in

for one to evaluate integrals of the form the case of the kink-soliton diffl_Jsion in some nearly inte-
fw/Rod Gy |2(vyt 3) 8(wq—qu) appearing in the expres- grable systemg15-17 (magnetic, f(_arr_oelectnc, efc. In _
0 a9 b ATa 2 AT q PP 9 P contrast to these systems, where radiationless processes, soli-
sions for kinetic coefficients after the replacement of they, scattering by the linear excitatioimagnons, for ex-
summation over_t_he phonon quasimomenta by an integratioramp@ dominate their dynamics, and where both types of
For the explicit calculations we usedwq=cCod(1 diffusion coefficients are independent of soliton velocity,
—q2R3/12), where co=Ry/x/M denotes the speed of here the soliton dynamics is the consequence of the
sound. From the demand thgf must lie in the interval Cherenkov-like radiation of phonon quanta which is the rea-
(0,7/Ry), otherwise these integrals vanish, the following son why diffusion coefficients in our case depend on soliton
condition for the Cherenkov-like radiation of acoustic speed.

phonons arises: 0cg<v <cCy. We note that the proposed ansatz of deriving of the col-
In the case of interaction with optical phonons, an analolective variable Lagrangian, based upon the choice of soliton
gous procedure results in soluti(_)n as pr_oposed below E@), is not the_ most accurate
one since it disregards dynamics of the soliton phase. A bet-
B2R3wS 1 ter choice would be AB(x,t)=8[x—&(t),t]=B[x
LlﬁTvg( Voo T 5)' (18 — ()]t é0I-2M} As a result the collective coordi-

nate Lagrangian would be expressed in terms of the two
pairs of conjugated variables: soliton momentum and its cen-
1 ter of mass coordinate, characterizing soliton translational
Voo T E)' (19 motion, and an additional pair, generalized “momentus™
and “coordinate” (), describing the evolution of the soliton
Hereqgp= wo/U is the zero of the argument of &function, phase. Kinetics of the soliton in that case would be described
while the coupling constant and adiabaticity parameter tak& terms of a bit more complicated FPE which can be derived
the formsS=Eg/fwo and B=2J/%wo. Analogously as in  in analogous way as E@11). However, due to the fact that
the previous case we found the following condition for thethe interaction Hamiltonia(7) does not depend on the gen-
Cherenkov-like radiationy = woRy /. eralized “coordinate”() and weakly depends on its conju-
Thus, irrespective of the type of the soliton-phonon cou-gated “momentum” (V) only through the appearance of the
pling, the “anomalous” as well as the ordinary diffusion soliton form factor in Eq(10) which, in the soliton sector,
exhibits the same temperature dependence but quite differef@nds to unity, dynamics of the soliton phase is practically
dependence on soliton velocity. Precisely, in the low-unaffected by the coupling to phonons. Thus one can accept
temperature limit KT<% wq, for acoustic andT</i w, for that the FPE11) describes the dynamics of the multiexciton
optical phononk the anomalous diffusion coefficient is tem- solitons fairly well. . .
perature independenD( ~const) while the ordinary one The method presented does not take into account soliton

becomesD ~T2. However, in the high-temperature limit we decay, which may arise as the result of the soliton-phonon

haveD* ~T andD~T. Considering the dependence on the!nteractlon. Accounting of this effect demands, however, tak-

soliton velocity we havéi) in the case of acoustical phonons '?}g m_';)or::c;oubr;‘t tsﬁ%vmr?cﬁp%ztsm drzsozhtges(l:ﬁm ?ﬁosggbég%_
the coefficient of the anomalous diffusion increases with th vi ubsy which, : '

increase of the soliton velocity, while the ordinary diffusion ains also the band of I_|near_ex0|tat|olr‘1$, excno”ns. There-
coefficient decreases in the range v <0.&c, and in- fore the phonon coupling with both “branches” of vibron

creases for 0@<v<C,, (i) for optical phononsp* de- spectra may induce “particles” exchange between them.

s 4 : . This should result in the time dependence of the soliton am-
creases whil® increases with the increase of soliton veloc- . P . .
ity plitude and consequently its life time becomes finite. Exami-

In summary we note that the kinetics of the multivibron nation of this problem will be presented separately.
solitons in a molecular chain, induced by the soliton-phonon  We would like to acknowledge useful conversations with

coupling, is characterized by the two substantially differentDr. D. Kapor. This work was supported by the Serbian Min-
diffusion processes. The first, an ordinddissipative one, istry of Science and Technology under Contract No. 01E15.
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