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Kinetic properties of multiquanta Davydov-like solitons in molecular chains

Jasmina Tekic´, Zoran Ivić, Slobodan Zekovic´, and Željko Pržulj
Theoretical Physics Department 020, The ‘‘Vincˇa’’ Institute of Nuclear Sciences, 11001 Belgrade, Serbia, Yugoslavia

~Received 21 January 1999!

The Fokker-Planck equation for multivibron solitons interacting with lattice vibrations in a molecular chain
has been derived by means of the nonequilibrium statistical operator method. It was shown that a soliton
undergoes diffusive motion characterized by two substantially different diffusion coefficients. The first one
corresponds to the ordinary~Einsteinian or dissipative! diffusion and characterizes the soliton Brownian mo-
tion, while the second one corresponds to the anomalous diffusion connected with frictionless displacement of
the soliton center of mass coordinate due to the interaction with phonons. Both processes are the consequence
of the Cherenkov-like radiation of phonon quanta arising when soliton velocity approaches the phase speed of
sound.@S1063-651X~99!01707-9#

PACS number~s!: 87.15.2v, 05.20.Dd, 71.35.2y, 71.38.1i
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Examination of the possible role of the solitonic mech
nism in charge and energy transfer over large distance
one-dimensional exciton~electron!-phonon systems has re
ceived considerable interest in the last twenty-five ye
@1–9#. A majority of these studies deal with the so-call
Davydov model, which assumes soliton formation on
count of single ‘‘exciton’’~vibron, electron, Frenkel exciton
. . .! trapping by the induced local distortion of the host la
tice @self-trapping~ST! mechanism#. In order to avoid any
confusion we note that in the present context, we use
term exciton to denote the quantum of the intramolecu
vibrational excitation of the molecular chain or vibron. I
vestigations carried out within the general theory of the
phenomena@5–7# indicate that the original Davydov pro
posal, i.e., soliton formation on account of the single exci
ST, cannot explain intramolecular energy~amide-I quanta!
transfer in biopolymers such as thea helix and acetanilide
~ACN!. Namely, according to the available data@3–9#, the
width of the exciton band of these substances is too sm
compared to the maximal phonon frequency-nonadib
limit, so that one should expect the formation of the sma
polaron band states@5–10# rather than a soliton.

Nevertheless, recent analysis@11# points to the possibility
of soliton formation in such systems but only for higher e
citation concentrations, where, the so-called ‘‘dressing’’
fect which results in an additional~phonon mediated!
exciton-exciton interaction, plays the dominant role in so
ton formation, which now represents the bound state of s
eral excitations. However, the results of that analysis,
tained within the framework of the mean-field method, are
limited validity. In particular, the starting point of these e
aminations was an effective, mean-field Hamiltonian d
scribing the system of interacting ‘‘dressed’’ quasipartic
~polarons! completely disregarding the coupling of such e
citations with the remaining phonons. As a result of suc
coupling, energy exchange between the constituent s
systems takes place, which, in turn, may have a certain
pact on soliton dynamics and stability and, in the final
stance, would induce its decay.

The subject of the present paper is the examination of
kinetic properties of such solitons arising as a conseque
of their coupling to the phonons which act as a thermal ba
PRE 601063-651X/99/60~1!/821~5!/$15.00
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Under these circumstances soliton dynamics can be
scribed by the Fokker-Planck equation~FPE! for the soliton
distribution function which will be derived below. For tha
purpose we shall use the method introduced in Ref.@12# for
the examination of the related problem: kink dynamics un
the influence of lattice vibrations. It is based upon t
method of a nonequilibrium statistical operator as develo
by Zubarev@13#.

The starting point of our analysis is the well-know
Frohlich-like Hamiltonian of the molecular chain specified

H5D(
n

An
1An2J(

n
An

1~An111An21!

1
1

AN
(
q,n

FqeiqnR0An
1An~bq1b2q

1 !1(
q

\vqbq
1bq ,

~1!

whereAn
1(An) describes the presence~absence! of the exci-

tation with the energyD on thenth molecular group,bq
1(bq)

creates ~annihilates! phonon quanta with frequencyvq ,
while Fq denotes the exciton-phonon coupling parameter
is given byFq52ix(\/2Mvq)1/2sinqR0 in the case of cou-
pling with acoustic phonons with frequencyvq
5vB sinuqR0 /2u, vB52(k/M )1/2 denotes the maximal pho
non frequency,k is the spring constant,M denotes the mas
of the molecular group,R0 denotes the lattice constant, an
finally J andx represent intersite dipole-dipole transfer int
gral and coupling strength, respectively. In the case of c
pling with dispersionless optical modes we havevq5v0
[const andF5x(\/2Mv0)1/2, the meaning of symbols is a
before. Obviously this corresponds to the known Holstei
molecular crystal model~MCM! @10#. Here we are primarily
interested in the examination of the soliton dynamics in
context of their possible relevance for the intramolecular
brational energy transfer in the systems such as thea helix
and ACN, where the width of the exciton band is small co
pared to the width of the phonon band. Under these con
tions the properties of the exciton-phonon system are do
nated by the so-called ‘‘dressing’’ effect, and solito
formation arises on account of the effective exciton-exci
821 ©1999 The American Physical Society
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822 PRE 60TEKIĆ, IVIĆ, ZEKOVIĆ, AND PRŽULJ
interaction@11#. As shown in Ref.@11#, exciton dressing can
be explicitly accounted for, with the help of the Lang-Firs
unitary transformation@14#, by rewriting the Hamiltonian~1!
in terms of the dressed exciton and new phonon operator
such a way the model Hamiltonian of the system can
represented as a sum of two terms:H5Heff1H int @11#. Here
Heff denotes the effective Hamiltonian of dressed excitati
while the second term represents the interaction Hamilton
with the remaining phonons. They are explicitly given as

Heff5@D2EB#(
n

Bn
1Bn2Jeff (

n,l 561
Bn

1Bn1 l

1(
q

\vqaq
1aq2EBF(

n
Bn

12Bn
2

1
1

2 (
n,l 561

Bn
1Bn1 l

1 Bn1 lBnG ~2!

and

H int5J(
n

$Bn
1Bn11@^Qn

1Qn11&2Qn
1Qn11#1H.c.%.

~3!

Here

Qn5expH 1

AN
(

q

Fq

\vq
e2 iqnR0~aq2a2q

1 !J .

In the above expressions we use the same notation a
Ref. @11# so thatJeff5Je2S(T) denotes the effective transfe
integral with

S~T!5
2

N (
q

uFqu2

~\vq!2
sin2

qR0

2
~2n̄q11!,

( n̄q is the equilibrium phonon distribution! denoting the
temperature-dependent coupling constant introduced in
@5–7#.

EB5
1

N (
q

uFqu2

\vq

denotes the small-polaron binding energy. Finally, the ope
torsBn

15U1AnU (Bn) describe the presence~absence! of a
dressed excitation on thenth site of the molecular chain
while aq

15U1bq
1U and aq5U1bqU are the creation and

annihilation operators of the ‘‘new’’ phonons in the cha
with the shifted equlibrium positions of the molecul
groups.U is the Lang-Firsov unitary operator@12#

U5expH 1

AN
(
n,q

Fq

\vq
e2 iqnR0An

1An~b2q2bq
1!J .

The last term in Eq.~2! represents the effective exciton
exciton interaction responsible for multiquanta soliton fo
mation. Their properties have been examined in detail in R
@11# where the criteria for their existence were formulated
terms of temperature, coupling constant@S(T)#, and the so-
called adiabaticity parameterB(T)5(8/3p)(2J/\vB)S(T).
In
e

s
n

in

ef.

a-

-
f.

It was found that the whole parameter space of the sys
(S-B plane! is divided into two regions in which two differ-
ent types of nonlinear excitations, soliton and so-called
trinsic self-localized mode, exist. These regions are separ
by the continuum boundaryS(T)5B(T)/N, whereN de-
notes the number of quanta engaged in the soliton crea
Soliton solutions correspond to those points of the sys
parameter space for which the condition for the applicabi
of the continuum approximation is satisfied and the soli
sector lies below that line@11#. In the systems we are prima
rily interested in the adiabaticity parameter lies in nonad
batic region (B!1) so that the soliton sector corresponds
the weak-coupling limit. Consequently, the exponential te
in H int containing the ‘‘small parameter’’ proportional to th
square root of the coupling constant, may be expanded
power series where we may safely keep the first two te
only. Under these conditions our interaction Hamiltonian b
comes

H int5
1

AN
Jeff (

n,q

Fq

\vq
~12eiqR0!eiqnR0Bn

1Bn11~aq
12a2q!

1H.c. ~4!

The next step is the derivation of an effective Lagrangian
the soliton-phonon system in which the soliton subsystem
described by the collective variables: its momentum and c
ter of mass.

In order to introduce a collective variable Hamiltonia
~Lagrangian! let us recall that the equations of motion for th
soliton amplitudes~soliton wave function! follow from the
time-dependent variational principle—i.e., demanding
stationarity of the actionA5* t1

t2dtL@c* (t),c(t)# (dA

50). Here L5( i\/2)@^CuĊ&2^ĊuC&#2H(C* ,C) de-
notes the Lagrangian of the system withH(C* ,C)
5^CuHuC& and whereuC& denotes an appropriate tria
state. In the present context it is chosen as a product of
polaron operator coherent statesuC(t)&5ub(t)&,ub(t)&
5)nubn(t)&. Derivation of the collective variable Hamilt
ionian assumes the following steps:~i! substututing the pro-
posed form of the trial state into the explicit expression
the Lagrangian,~ii ! going over to a continuum approxima
tion bn(t)→b(x,t), ~iii ! substitution of the explicit soliton
solution in the formb(x,t)5b@x2j(t)# @j(t) denotes soli-
ton center of mass# into the so obtained Lagrangian, an
finally ~iv! integration over the spatial coordinatex. The first
two steps give us

L5
i\

2 E
2`

` dx

R0
~ ḃb* 2bḃ* !2Hs2Hint1Lph. ~5!

HereHs represents the Hamiltonian function of the soliton
subsystem which, in accordance with the above propo
procedure, may be approximated by the Hamiltonian of
nonlinear Schro¨dinger model~NSM!

Hs5~D2EB22Jeff!E
2`

` dx

R0
ubu21Jeff R0

2E
2`

` dx

R0
ubxu2

22EBE
2`

` dx

R0
ubu4, ~6!
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while

Hint5
R0Jeff

AN
(

q
E

2`

` dx

R0

Fq~12eiqR0!

\vq

3eiqx~aq
12a2q!~b* bx2c.c.! ~7!

denotes the soliton-phonon interaction Hamiltonian. As us
dots and subscripts denote derivation with respect tot andx,
respectively. Finally,

Lph5
i\

2 (
q

~ ȧq
1aq2H.c.!2Hph ~8!

denotes the phonon subsystem Lagrangian. Following
above proposed procedure we take the soliton amplitud
follows: b(x,t)5b@x2j(t),t#[b̃@x2j(t)#ei $ks[x2j(t)] 2vt%.
Here ks5Psol/\N denotes the soliton quasimomentum
b̃@x2j(t)# is the soliton envelope given byb̃(x,t)
5N(m/2)1/2sech(mN/R0)@x2j(t)#, while v represents a
soliton phase whose explicit form is irrelevant in the pres
context. After straightforward calculation we obtain the fo
lowing collective variable Lagrangian:

L5 j̇Psol2
Psol

2

2ms
2

Psol

AN
(

q
Gqeiqj~aq

12a2q!1Lph, ~9!

where ms5N\2/2JeffR0
2 denotes the soliton effective mas

@11#. In this expression we have neglected a constant t
which does not contain soliton collective variables a
which consequently does not influence its dynamics. T
soliton-phonon coupling parameter is given explicitly as

Gq5
2iR0Jeff

\

Fq~12eiqR0!

\vq

pqR0/2mN
sinh~pqR0/2mN!

. ~10!

The model specified by the above Lagrangian describes
system consisting of the classical particle~s! ~soliton! inter-
acting with a quantum-mechanical thermal bath~phonons!. It
has precisely the same form as the one derived in Ref.@12#
for the examination of the kinetic properties of kink solito
interacting with a three-dimensional phonon field and
may safely follow the procedure proposed there. Thus
next step is the derivation of the FPE for the soliton dis
bution function@ f (Psol,j)# which characterizes the macro
scopic state of the system and which is defined as an ave
value of the soliton density@n(Psol,j)5( id(Psol2Pi)d(j
2j i)#: f (Psol,j)5^n(Psol,j)&, where ^ . . . & denotes the
averaging over the nonequlibrium statistical operator@13#. In
such a way, strictly following Ref.@12#, we obtain the FPE

] f

]t
1

Psol

msol

] f

]j
5

]

]j S L11kT
] f

]j D
1

]

]Psol
FL22S Psol

ms
f 1kT

] f

]Psol
D G , ~11!

HereL11 andL22 are kinetic coefficients given as
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L115
1

kTE2`

0

e«tdtK ]Hint

]Psol

]Hint~ t !

]Psol
L

0

, ~12!

L225
1

kTE2`

0

e«tdtK ]Hint

]j

]Hint~ t !

]j L
0

, ~13!

where^•••&0 stands for the averaging over the thermal ba
while Hint denotes the soliton-phonon interaction Ham
tonian expressed in terms of collective variables (j,Psol). Its
explicit form is given by the third term in the collectiv
variable Lagrangian in Eq.~9!. Here, in the final calculations
one must set«→0. Explicit time dependence ofHint in the
above expressions appears only through the time depend
of phonon operators and soliton momentum and cente
mass coordinate and, in the first approximation, will
specified by the solutions of their equations of motion w
respect to the unperturbed case. In particular, for the ca
lation of the above kinetic coefficients we shall adopt t
following approximation:aq(t)5aqe2 ivqt, aq

1(t)5aqeivqt,
andj(t)5x01vt (v-soliton velocity!. Thus we get

L115
1

kT

2p

N (
q.0

uGqu2S nq1
1

2D d~vq2qv !, ~14!

L225
1

kT

2pPsol
2

N (
q.0

q2uGqu2S nq1
1

2D d~vq2qv !.

~15!

It follows from the above derived FPE, that due to the int
action with phonons, the soliton undergoes diffusive mot
as result of two different mechanisms. The first one de
mines the Brownian motion of the soliton and corresponds
the ordinary~Einsteinian or dissipative! diffusion character-
ized by the diffusion coefficientD5kT/L22, whereL22 has
the meaning of the viscosity or friction coefficient. The se
ond mechanism, on the contrary, is not connected with
sipation and arises as a result of the shift of the soliton ce
of mass coordinate due to the interaction with phonons. T
quantityD* 5kTL11 plays the role of the coefficient of thi
diffusion. Both mechanisms are the consequence of
Cherenkov-like radiation of phonon quanta arising when
soliton velocity (v) approaches the phase speed of sou
vq /q. This is obvious from the presence of ad function in
the expressions for the kinetic coefficients which are diff
ent from zero only when the argument of thed function
vanishes, i.e., whenvq5qv. The appearance of ad function
in the above expressions enables one to calculate expli
both diffusion coefficients. Furthermore, adopting the lo
wavelength limit (qR0'0) we may approximate the solito
form factor, the last factor in the expression for the solito
phonon coupling parameter~10!, by unity. This is justified
since it is highly peaked forqR0'0 and rapidly diminishes
asqR0 increases. In such a way we obtain

L11'12
B2R0

2vBS

kTA12v/c0
S nq0

1
1

2D , ~16!

L22'288
vBv2mS

2B2S

kT
A12

v
c0

S nq0
1

1

2D , ~17!
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in the case of the soliton coupling with acoustical phono
HereB5(3p/8)(2J/\vB) andS5(3p/8)(EB /\vB) repre-
sent the adiabaticity parameter and the coupling const
respectively, whileq05(4.9/R0)A12v/c0 denotes a non-
trivial solution of the equationvq2qv50. It is necessary
for one to evaluate integrals of the form
*0

p/R0dqqnuGqu2(nq1 1
2 )d(vq2qv) appearing in the expres

sions for kinetic coefficients after the replacement of
summation over the phonon quasimomenta by an integra
For the explicit calculations we usedvq.c0q(1
2q2R0

2/12), where c05R0Ak/M denotes the speed o
sound. From the demand thatq0 must lie in the interval
(0,p/R0), otherwise these integrals vanish, the followi
condition for the Cherenkov-like radiation of acous
phonons arises: 0.6c0<v,c0.

In the case of interaction with optical phonons, an ana
gous procedure results in

L11'
B2R0

5v0
4S

kTv3 S nq0
1

1

2D , ~18!

L22'
v0

6R0
5mS

2B2S

kTv3 S nq0
1

1

2D . ~19!

Hereq05v0 /v is the zero of the argument of ad function,
while the coupling constant and adiabaticity parameter t
the formsS5EB /\v0 and B52J/\v0. Analogously as in
the previous case we found the following condition for t
Cherenkov-like radiation:v>v0R0 /p.

Thus, irrespective of the type of the soliton-phonon co
pling, the ‘‘anomalous’’ as well as the ordinary diffusio
exhibits the same temperature dependence but quite diffe
dependence on soliton velocity. Precisely, in the lo
temperature limit (kT!\vq0

for acoustic andkT!\v0 for
optical phonons!, the anomalous diffusion coefficient is tem
perature independent (D* ;const) while the ordinary one
becomesD;T2. However, in the high-temperature limit w
haveD* ;T andD;T. Considering the dependence on t
soliton velocity we have~i! in the case of acoustical phonon
the coefficient of the anomalous diffusion increases with
increase of the soliton velocity, while the ordinary diffusio
coefficient decreases in the range 0.6c0<v<0.8c0 and in-
creases for 0.8c0<v,c0, ~ii ! for optical phonons,D* de-
creases whileD increases with the increase of soliton velo
ity.

In summary we note that the kinetics of the multivibro
solitons in a molecular chain, induced by the soliton-phon
coupling, is characterized by the two substantially differe
diffusion processes. The first, an ordinary~dissipative! one,
.

nt,

e
n.

-

e

-

nt
-

e

n
t

is connected to the soliton viscosity while the second, so
speak anomalous one, arises due to the phonon induced
of the soliton position. This is the consequence of the f
that the soliton-phonon interaction depends on soliton p
tion and momentum as well. A similar situation arises also
the case of the kink-soliton diffusion in some nearly int
grable systems@15–17# ~magnetic, ferroelectric, etc.!. In
contrast to these systems, where radiationless processes
ton scattering by the linear excitations~magnons, for ex-
ample! dominate their dynamics, and where both types
diffusion coefficients are independent of soliton veloci
here the soliton dynamics is the consequence of
Cherenkov-like radiation of phonon quanta which is the r
son why diffusion coefficients in our case depend on soli
speed.

We note that the proposed ansatz of deriving of the c
lective variable Lagrangian, based upon the choice of sol
solution as proposed below Eq.~8!, is not the most accurate
one since it disregards dynamics of the soliton phase. A
ter choice would be b(x,t)5b@x2j(t),t#[b̃@x
2j(t)#ei $ks[x2j(t)] 2V(t)%. As a result the collective coordi
nate Lagrangian would be expressed in terms of the
pairs of conjugated variables: soliton momentum and its c
ter of mass coordinate, characterizing soliton translatio
motion, and an additional pair, generalized ‘‘momentum’’N
and ‘‘coordinate’’V, describing the evolution of the solito
phase. Kinetics of the soliton in that case would be descri
in terms of a bit more complicated FPE which can be deriv
in analogous way as Eq.~11!. However, due to the fact tha
the interaction Hamiltonian~7! does not depend on the gen
eralized ‘‘coordinate’’V and weakly depends on its conju
gated ‘‘momentum’’ (N) only through the appearance of th
soliton form factor in Eq.~10! which, in the soliton sector
tends to unity, dynamics of the soliton phase is practica
unaffected by the coupling to phonons. Thus one can ac
that the FPE~11! describes the dynamics of the multiexcito
solitons fairly well.

The method presented does not take into account so
decay, which may arise as the result of the soliton-phon
interaction. Accounting of this effect demands, however, t
ing into account the whole spectrum of the NSM describ
the vibron subsystem which, besides the soliton mode c
tains also the band of linear excitations, ‘‘excitons.’’ Ther
fore the phonon coupling with both ‘‘branches’’ of vibro
spectra may induce ‘‘particles’’ exchange between the
This should result in the time dependence of the soliton a
plitude and consequently its life time becomes finite. Exam
nation of this problem will be presented separately.
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